2022 Annual Drinking Water Quality Report

The Utilities Board of the City of Andalusia

he Utilities Board of the City of Andalusia is very pleased to provide you with this year's Annual Quality Water Report. We want to keep you informed about the excellent water and services we have delivered to you over the past year. Our goal is and always has been, to provide to you a safe and dependable supply of drinking water. We want you to understand our efforts to maintain and continually improve the water you receive and to protect our water supply.

Our water source is groundwater drawn from nine (9) wells. Three (3) wells draw from the Tuscahoma Sands/Hatchetigbee aquifer, three (3) wells draw from the Nanafalia aquifer and three (3) well draws from the Clayton Limestone aquifer. Each water system must complete a Source Water Assessment Program (SWAP). The SWAP is comprised of four distinct activities: delineation of the source water assessment area, contaminant inventory, susceptibility analysis and public awareness. The Utilities Board has completed each required component of the source water assessment. A copy of the assessment report is available for review in our office. Chlorine is added at each well as a disinfectant.

The Utilities Board is pleased to report that our drinking water is safe and meets federal and state requirements. If you have any questions about this report or concerning your water utility, please contact the Andalusia Utilities Board at (334) 222-1332.

If you want to learn more, please attend any of our regularly scheduled meetings. They are held on the third Thursday of each month, at 12:00 p.m. in Room 112 of City Hall. The Utilities Board routinely monitors contaminants in your drinking water according to Federal and State laws.

This table shows the results of our monitoring for the period of January 1st to December 31st, 2022. It is important to remember that the presence of these contaminants does not necessarily pose a health risk. This table has many abbreviations you might not be familiar with. To help you better understand these abbreviations we have provided the following definitions:

definitions:

- Non-Detects (ND) laboratory analysis indicates that the constituent is not present.
- Parts per million (ppm) or milligrams per liter (mg/l) one part per million corresponds to one minute in two years, or a single penny in \$10,000.
- Parts per billion (ppb) or micrograms per liter (µg/L) one part per billion corresponds to one minute in 2,000 years, or a single penny in \$10,000,000.
- Parts per trillion (ppt) or nanograms per liter (ng/L) one part per trillion corresponds to one minute in 2,000,000 years, or a single penny in \$10,000,000,000.
- Parts per quadrillion (ppq) or picograms per liter (pg/L) one part per quadrillion corresponds to one minute in 2,000,000,000 years, or a single penny in \$10,000,000,000,000
- Picocuries per liter (pCi/l) picocuries per liter is a measure of radioactivity in water.
- Millirems per years (mrem/yr) measure of radiation absorbed by the body.
- Nephelometric Turbidity Units (NTU) a measure of the clarity of water. Turbidity more than 5 NTU is just noticeable to the average person.
- Maximum Contaminant Level The "Maximum Allowed"

- (MCL) is the highest level of a contaminant that is allowed in drinking water.
- Maximum Contaminant Level Goal The "Goal" (MCLG) is the level of a contaminant in drinking water below which there is no known or expected risk to health. MC-LGs allow for a marqin of safety.
- Maximum Residual Disinfectant Level Goal (MRDLG) The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants
- Maximum Residual Disinfectant Level (MRDL) The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.
- MFL Million Fibers per Liter.
- AL Action Level the concentrations of a contaminant, which, if exceeded, triggers, treatment, or other requirements, which a water system must follow.
- TT Treatment Technique A treatment technique is a required process intended to reduce the level of a contaminant in drinking water.
- Variances and Exemptions The Department or EPA permission not to meet and MCL or a treatment technique under certain conditions.

Table of Detected Contaminants

Table of Botostoa Contaminanto						
Contaminant	Violation Yes/No	Level Detected	Unit Measurement	MCLG	MCL	Likely Source of Contamination
Microbiological Contaminants						
Turbidity (2020)	No	.20	NTU	n/a	TT	Soil runoff
Radioactive Contaminants						
Alpha emitters (2020)	No	3.4±-2.0	pCi/l	N/A	15	Erosion of natural deposits
Radium 228 (2020)	No	0.8±-0.4	pCi/l	N/A	5	Erosion of natural deposits
Inorganic C	ontami	nants				
Copper	No	0.33	ppm	1.3	AL=1.3	Corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives
Fluoride (2020)	No	0.64	ppm	4	4	Water additive which promotes strong teeth; erosion of natural deposits; discharge from fertilizer and aluminum factories
Nitrate	No	0.19	ppm	10	10	Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits
Volatile Organic Contaminants						
(TTHM) Total trihalomethanes	No	33	ppb	0	80	By-product of drinking water chlorination
Haloacetic Acids (HAA5)	No	5.8	ppb	N/A	60	By-product of drinking water chlorination
Xylenes (2020)	No	0.74	ppm	10	10	Discharge from petroleum factories; discharge from chemical factories

Table of Primary Contaminants - At high levels some primary contaminants are known to pose a health risk to humans. This table provides a quick glance of any primary contaminant detections.

Contaminant	MCL	Andalusia	Contaminant	MCL	Andalusia
Bacteriological			Endrin	2 ppb	ND
Total Coliform Bacteria	<5%	ND	Epichlorohydrin	ΪΪ	ND
Turbidity	5.0 NTU	ND	Glyphosate	700 ppb	ND
Fecal coliform and E. coli	TT	ND	Total Organic Carbon (TOC)	TT ppm	ND
Radiological			Heptachlor	400 ppt	ND
Beta/Photon Emitters	4	ND	Heptachlor epoxide	200 ppt	ND
Alpha Emitters	15	ND	Hexachlorobenzene	1 ppb	ND
Combined Radium	5	ND	Hexachloropentadiene	50 ppb	ND
Inorganic			Lindane	200 ppt	ND
Antimony	6 ppb	ND	Methoxychlor	40 ppb	ND
Arsenic	10 ppb	ND	Oxamyl [Vydate]	200 ppb	ND
Asbestos (MFL)	7	ND	PCBs	500 ppt	ND
Barium	2 ppm	ND	Pentachlorophenol	1 ppb	ND
Beryllium	4 ppb	ND	Picloram	500 ppb	ND
Cadmium	5 ppb	ND	Simazine	4 ppb	ND
Chromium	100 ppb	ND	Toxaphene	3 ppb	ND
Copper	AL=1.3 ppm	0.33	Benzene	5 ppb	ND
Cyanide	200 ppb	ND	Carbon Tetrachloride	5 ppb	ND
Fluoride	4 ppm	ND	Chlorobenzene	100 ppb	ND
Lead	AL=15 ppb	35	Dibromo chloropropane	200 ppt	ND
Mercury	2 ppb	ND	o-Dichlorobenzene	600 ppb	ND
Nitrate	10 ppm	ND	p-Dichlorobenzene	75 ppb	ND
Nitrite	1 ppm	ND	1,2-Dichloroethane	5 ppb	ND
Selenium	50 ppb	ND	1,1-Dichloroethylene	7 ppb	ND
Thallium	2 ppb	ND	Cis-1,2-Dichloroethylene	70 ppb	ND
Organic Chemicals			trans-1,2-Dichlorethylene	100 ppb	ND
2,4-D	70 ppb	ND	Dichloromethane	5 ppb	ND
2,4,5-TB (Silvex)	50 ppb	ND	1,2-Dichloropropane	5 ppb	ND
Acrylamide	ĬΪ	ND	Ethylbenzene	700 ppb	ND
Alachlor	2 ppb	ND	Ethylene dibromide	50 ppt	ND
Atrazine	3 ppb	ND	Styrene	100 ppb	ND
Benzo(a)pyrene [PHAs]	200 ppt	ND	Tetrachloroethylene	5 ppb	ND
Carbofuran	40 ppb	ND	1,2,4-Trichlorobenzene	70 ppb	ND
Chlordane	2 ppb	ND	1,1,1-Trichloroethane	200 ppb	ND
Dalapon	200 ppb	ND	1,1,2-Trichloroethane	5 ppb	ND
Di-(2-ethylhexyl)adipate	400 ppb	ND	Trichloroethylene	5 ppb	ND
Di-(2-ethylhexyl)phthlates	6 ppb	ND	TTHM	80 ppb	33
Dinoseb	7 ppb	ND	HAA5	60 ppb	5.8
Diquat	20 ppb	ND	Toluene	1 ppm	ND
Dioxin [2,3,7,8-TCDD]	30 ppq	ND	Vinyl Chloride	2 ppb	ND
Endothall	100 ppb	ND	Xylenes	10 ppm	ND

The table below list the contaminants that are not regulated by the EPA or ADEM but are tested for in your drinking water. These contaminants pose many of the same health risk as the regulated contaminants but their presence in most drinking water is not frequent enough to warrant regulation. Unregulated contaminants are tested for to provide historical data on components presence in drinking water over time.

Test Results - Unregulated

Contaminant Table | Monitoring results in ppm

CONTAMINANT	Low Result	High Result
1.1 — Dichloropropene	ND	ND
1.1.1.2-Tetrachloroethane	ND	ND
1.1.2.2-Tetrachloroethane	ND	ND
1.1-Dichloroethane	ND	ND
1,2,3 — Trichlorobenzene	ND	ND
1,2,3 — Trichloropropane	ND	ND
1,2,4 — Trimethylbenzene	ND	ND
1,3 — Dichloropropane	ND	ND
13 — Dichloropropene	ND	ND
1.3.5 — Trimethylbenzene	ND	ND
2,2 — Dichloropropane	ND	ND
3-Hydroxycarbofuran	ND	ND
Aldicarb	ND	ND
Aldicarb Sulfone	ND	ND
Aldicarb Sulfoxide	ND	ND
Aldrin	ND	ND
Bromobenzene	ND	ND
Bromochloromethane	ND	ND
Bromodichloromethane	1.8	2.4
Bromoform	11	21
Bromomethane	NĎ	ÑĎ
Butachlor	ND	ND
Carbaryl	ND	ND
Chloroethane	ND	ND

CONTAMINANT	Low Result	High Resul
Chloroform	ND	1.2
Chloromethane	ND	ND
Dibromochloromethane	5.7	8.4
Dibromomethane	ND	ND
Dicamba	ND	ND
Dichlorodifluoromethane	ND	ND
Dieldrin	ND	ND
Hexachlorobutadiene	ND	ND
Isonrnylhenzene	ND	ND
M-Dichlorobenzene	ND	ND
Methomyl	ND	ND
MTBE '	ND	ND
Metolachlor	ND	ND
Metribuzin	ND	ND
N – Butvlbenzene	ND	ND
Naphthalene	ND	ND
N-Propyl benzene	ND	ND
0-Chlorotoluene	ND	ND
P-Chlorotoluene	ND	ND
P-Isopropyltoluene	ND	ND
l Propachlor	ND	ND
Sec - Butylbenzene	ND	ND
Tert - Butylbenzene	ND	ND
Trichlorfluoromethane	ND	ND

The third Unregulated Contaminant Rule (UCMR3) was initiated by EPA in 2012. UCMR3 requires the monitoring of two viruses and 28 unregulated chemical contaminants. These contaminants pose many of the same health risks as the regulated contaminants but their presence in most drinking water is not frequent enough to warrant regulation. Unregulated contaminants are tested for to provide historical data on components presence in drinking water over time.

Third Unregulated Contaminant

Monitoring (UCMR 3) | Monitoring results in ppb

monitoring (oomit of t	IVIOI IILOI II I	${}_{>}$
CONTAMINANT	DETECTED	
1,2,3 -tricholoropropane	ND	
1,3-butadiene	ND	
chloromethane (methyl chloride)	ND	
1.1-dichloroethane	ND	
bromomethane	ND	
chlorodifluoromethane (HCFC-22)	ND	
bromochloromethane (Halon 1011)	ND	
1,4-dioxane	ND	
vanadium	ND	
molybdenum	ND	
17-β-estradiol	ND	
17-a-ethynylestradiol	ND	
estriol	ND	

esuits ii i ppb	TO THE REAL PROPERTY.
CONTAMINANT	DETECTED
cobalt	ND
strontium	ND
chromium ³	ND
chromium-6 ⁶	ND
chlorate	ND
perflourooctanesulfonic acid (PFOS)	ND
perfluorooctanoic acid (PFOA)	ND
perfluorononanoic acid (PFNA)	ND
perfluorohexanesulfonic acid PFHxS)	ND
perflouorobutanesulfonic acid (PFBS)	ND
perflouroheptanoic acid (PFHpA)	ND
estrone	ND
testosterone	ND
4-anadrostene-3,17 dione	ND
enteroviruses	ND

The fourth Unregulated Contaminant Rule (UCMR4) was initiated by EPA in 2016. UCMR4 requires the monitoring of 10 cyanotoxins and 20 additional unregulated chemical contaminants. These contaminants pose many of the same health risk as the regulated contaminants but their presence in most drinking water is not frequent enough to warrant regulation. Unregulated contaminants are tested for to provide historical data on components present in drinking water over time.

Fourth Unregulated Contaminant

Monitoring (UCMR 4) | Monitoring results in ppb

CONTAMINANT	DETECTED
Germanium	ND
Manganese (2020)	ND
Alpha-hexachlorocyclohexane	ND
Chlorpyrifos	ND
Dimethipin	ND
Ethoprop	ND
Oxyfluorfen	ND
Prófenofos	ND
Tebuconazole	ND
Total permethrin (cis- & trans-)	ND
Bromochloroacetic Acid	ND
Bromodichloroacetic Acid	ND
Chlorodibromoacetic Acid	ND
Dibromoacetic Acid	5.8
Dichloropeatic Acid	MD

CONTAMINANT	DETECTED
Tribufos	ND
1-butaol	ND
2-methoxyethanol	ND
2-propen-1-o1	ND
Butylated hydroxyanisole	ND
0-tóluidine´	ND
Ouinoline	ND
Total Organic Carbon (TOC)	ND
Bromide	ND
Monobromoacetic Acid	ND
Monochloroacetic Acid	ND
Tribromoacetic Acid	ND
Trichloroacetic Acid	ND

09587 CDG Andalusia Water.indd 2